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Abstract There is growing interest in research and
development to develop novel tools to study, detect, and
characterize microbes and their communities in indus-
trial environments. However, knowledge about their
validity in practical industrial use is still scarce. This
review describes the advantages and limitations of tra-
ditional and molecular methods used for biofilm and/or
planktonic cell studies, especially those performed with
Listeria monocytogenes, Bacillus cereus, and/or Clos-
tridium perfringens. In addition, the review addresses the
importance of isolating the microorganisms from the
industrial environment and the possibilities and future
prospects for exploiting the described methods in the
industrial environment.

Keywords Biofilm Æ Culture Æ Molecular techniques Æ
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Introduction

Microorganisms inhabiting the food and processing
industries are mostly benign, but some can be harmful to
the processing and safety of the product. Therefore, the
control of harmful microorganisms is essential. Indus-
trial processes that deal with any biological material
provide nutrients and conditions for microorganisms to
grow, either in the shelter of sessile biofilms on surfaces
or as planktonic cells in the circulating process waters.
Moreover, in most natural and industrial systems where
the supply of nutrients is sufficient, microorganisms
grow as spatially organized, matrix-enclosed, multispe-
cies communities in biofilms. Besides a solid surface, the

microbes need only water to initiate biofilm formation
[72, 73, 270]. Microbial biofilms and biofouling of sur-
faces and interfaces within the industrial environment
are major problems. In industry, the first step is identi-
fying the problem of biofilms and biofouling in a par-
ticular process or site. Subsequently, it is important to
determine the best possible methods for detection of
biofilms in situ, so that they can be characterized and
possibly further studied in the laboratory. Finally, this
information can be used to define strategies for con-
trolling biofilm formation in that specific environment
[208].

Microorganisms in food and in industrial environ-
ments are distributed unevenly; and there is a great
variation in the cell density and composition of micro-
bial population over space and time. Typically, the
microbial cells are located in the surfaces of the food
matrix and process equipment; and the cell density and
species distribution may vary in different parts of a food
product [77, 156, 158]. Changes in the ecosystem cause
continuous qualitative and quantitative variation in the
composition of the microbial community over time
[152]. Both intrinsic (e.g. chemical composition, natural
microbiota) and extrinsic factors (e.g. processing, stor-
age conditions) affect microbial growth [272] and
consequently the composition of the microbial commu-
nity. All these factors affect the actual sampling of the
industrial environment, making it a demanding task to
perform.

Published data on microbial detection and charac-
terization from industrial environments is abundant and
therefore the following review is restricted to the most
relevant and widely applied techniques and to just a few
specific bacterial species important in the food and
process industrial environments, namely Listeria mono-
cytogenes, Bacillus cereus, and Clostridium perfringens.
Both traditional and molecular identification and char-
acterization methods for bacteria and their communities
are discussed, in addition to typing methods for bacterial
isolates obtained from the industrial environment and/
or foodstuff. Future prospects for the exploitation of the
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described methods in the industrial environment and
industrial samples are also addressed.

Hygiene and safety problems in the industrial
environment

Problems caused by bacterial biofilms

Biofilms protects microbes from hostile environments
and act as a trap for nutrient acquisition [270]. In mul-
tispecies biofilms, mixed-species microcolonies are
formed by a part of the sessile population when cells of
metabolically cooperative species are juxtaposed and are
thus in a position to benefit from interspecies substrate-
exchange and/or mutual end-product removal. This level
of structural organization and metabolic specialization
explains the remarkable metabolic efficiency of micro-
bial biofilms and their universal and inherent resistance
to antimicrobial agents [72]. In practice, a biofilm on
improperly cleaned surfaces is a barrier between mi-
crobes and disinfectants, antibiotics, or biocides [54,
228, 298, 458]. Biofilm components can also protect
microbes from the effects of steam: e.g. the bacterial
slime of Bacillus sp. improves the heat resistance of the
bacterium, extending the autoclaving time required for
efficient sterilization to several hours [270]. Besides
causing problems in cleaning and hygiene [184], biofilms
can cause energy losses and blockages in condenser
tubes, cooling fill materials, water and wastewater cir-
cuits, and heat exchangers [64]. Biofilms can occasion-
ally cause health risks by releasing pathogens into
drinking-water distribution systems [44, 453]. In food
processing water-supply systems, biofilms cause prob-
lems in granular activated carbon columns, reverse
osmosis membranes, ion exchange systems, degasifiers,
water storage tanks, and microporous membrane filters
[132, 287]. Commonly found microbes in the food
industry and on food contact surfaces are enterobacte-
ria, lactic acid bacteria, micrococci, streptococci, pseu-
domonads, and bacilli [458]. The formation of resistant
spores that can contaminate process equipment and
food products is a special concern for the food pro-
cessing industry and for the consumer [17].

The level of hygiene in the paper and board industry
is important, since the end-products are often in contact
with foodstuffs. The microbial isolates from the paper
and board industry are mainly bacilli, enterobacteria,
pseudomonads, or actinomycetes, but moulds, yeasts,
anaerobic sulfate-reducing bacteria, and clostridia may
also be detected [168, 333, 392]. The growth of B. cereus,
clostridia, coliforms, and staphylococci in the paper-
making process is detrimental to product hygiene [323,
379]. Aerobic and anaerobic spore-forming bacteria,
such as bacilli and clostridia, which are not killed during
the drying stage of paper-making, are the most impor-
tant microbes from the safety point of view [194, 324,
341, 407]. Slime build-up in paper-processing machines,
caused by microbial biofilms, may cause significant

economic losses, mainly due to machinery-running
problems in addition to spots, holes, and quality prob-
lems in the end-product. The machinery slime can also
contain polymers of microbial origin, fibers, and inor-
ganic precipitates. Common bacteria detected and
identified from paper-processing machinery slimes
include enterobacteria, bacilli, pseudomonads, and
Clavibacter spp. The total number of microbes in the
slime can reach 1012 colony-forming units (cfu)/ml.
Pathogens, such as B. cereus, can also be found in these
machinery slimes. Anaerobic bacteria, such as sulfate-
reducing bacteria, can be involved in the initiation and
progress of corrosion [36, 168, 408]. Also, heat-stable
microbial metabolites, mainly enzymes and toxins, can
cause problems if migration occurs from a packaging
material into a foodstuff. Volatile metabolites, such as
the fatty acids produced by many Clostridium spp. and
the hydrogen sulfide produced by sulfate-reducing bac-
teria, can cause organoleptic problems in end-products
[107, 168, 341].

Prevention of hygiene and safety problems

The elimination of biofilms is a very difficult and
demanding task, because many factors affect the
detachment, such as temperature, time, mechanical
forces, and chemical forces [453]. Harmful microorgan-
isms may enter the manufacturing process and reach the
end-product in several ways, e.g. through raw materials,
air in the manufacturing area, chemicals employed,
process surfaces, or factory personnel [193, 323].

The target of microbial control in a process line is
two-fold: to reduce or limit the number of microbes and
their activity and to prevent and control the formation
of deposits on process equipment. The present most
efficient means for limiting the growth of microbes are
good production hygiene, a rational running of the
process line, and a well designed use of biocides and
disinfectants. Novel means to control slime formation
are constantly sought, e.g. through the control of envi-
ronmental factors on the process line and the use of
surface-active agents, (bio)-dispersants, enzymes, and
new biocidal chemicals, in addition to non- or minimally
toxic chemicals [36, 108, 215]. The cleanliness of sur-
faces, the training of personnel and good manufacturing
and design practices are important in combating hygiene
problems in the food industry [179]. Disinfection after
the removal of biofilms, using suitable cleaning proce-
dures, is also required in food plants where wet surfaces
provide favorable conditions for microbial growth [116,
286].

In the food industry, equipment design and choice of
surface materials are important in fighting microbial
biofilm formation [179, 454]. The most practical material
in processing equipment is steel, which can be treated
with mechanical grinding, brushing, lapping, and elec-
trolytic or mechanical polishing. Dead ends, corners,
cracks, crevices, gaskets, valves, and joints are
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vulnerable points for biofilm accumulation [67, 115,
322]. Poorly designed sampling valves can destroy an
entire process or give rise to incorrect information, due
to biofilm formation at measuring points. Valves are
vulnerable to microbial growth and thus constitute a
hygiene risk [67]. Also, hoses, tubes, filters, etc. con-
taining polyvinylchloride increase the risk of contami-
nation, due to this material: it is more easily
contaminated and it deteriorates more easily than steel
[331]. Problems with the accumulation of particulates
and cells occur whenever cleaning is inappropriate for
any reason [278]. Inadequate cleaning and sanitation of
surfaces coated with biofilms presents a source of con-
tamination within the process [458].

Achieving a clean food plant must be the aim of the
plant managers, who have to invest the necessary time
and money to accomplish it. Monitoring methods and
cleaning procedures, including the program, cleaning
agents, disinfectants, and cleaning equipment, must be
carefully planned [454]. Cleaning in the process industry
should be based on systematic planning. The knowledge
that microbes grow differently on surfaces, compared
with suspensions, is the first step in developing advanced
regimes in process hygiene [178]. Biofilm formation in
industrial systems reflects a disturbance in the process
[270]. Biofilms are less likely to accumulate in well
designed systems, which are effectively cleaned. Results
indicate that low-pressure cleaning in itself is not effective
enough to remove biofilms unless the cleaning agent is
effective [457]. The efficiency of cleaning agents is assessed
by their ability to remove biofilms from process surfaces
together with their ability to kill the bacteria present in
the biofilm [457]. The cleaning effect in open systems can
be enhanced using double-foaming or through scrubbing.
In closed processes, the removal of biofilms from surfaces
can be performed using efficient flow conditions in com-
bination with effective cleaning agents [457]. Strong oxi-
dizing and/or disinfective agents are used to combat
microbial deposits on equipment surfaces in problem
areas. Satisfactory elimination of biofilms using only
disinfectant treatment cannot be achieved, even if the
agent is very effective against freely suspended cells [286].
Sources, problems, and control of microbial contami-
nants in industrial processes are presented in Fig. 1.

Monitoring hygiene and safety problems

Monitoring practices based on sampling of the liquid
phase do not reflect the location or extent of microbes
growing in biofilms on surfaces [69]. The methods used
for monitoring process hygiene are often based on
conventional cultivation, using various types of agar
plates or adenosine triphosphate (ATP) measurement.
Conventional cultivation requires several days before
the result can be obtained and it enumerates cells able to
form colonies on the given agar [457]. The measurement
of ATP is an often used method for detecting biological
growth [4, 147], e.g. for the measurement of total

hygiene [457]. The detection limit of ATP measurement
for bacteria is 103–104 cfu/ml [39].

The detection of deposit build-up on equipment sur-
faces at an early stage enables effective countermeasures
and thus results in an improvement in the process hy-
giene. Successful on-line monitoring of microbiological
deterioration in the process industry has great beneficial
impact, of both economic and environmental value. On-
line monitoring saves both expense and the environment
when gentle cleaning methods can be used and unnec-
essary procedures avoided.

A reliable identification of industrial microbial iso-
lates is often difficult to obtain. Over the past decade,
many improvements have been seen in both conventional
and modern methods for the detection and identification
of microorganisms from the industrial environment.
Phenotypic analyses (e.g. the fatty acid methyl ester test,
or sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis) have traditionally played an important role in
microbial identification and classification. Genotypic
analyses (e.g. partial 16S rDNA sequencing, ribotyping)
have proved very useful and accurate in the identification
and classification of industrial microbial isolates, since
the physiological properties of the industrial microbes
may be different from those of the reference strains.
Industrial strains are usually well adapted to their specific
environments and do not often possess the typical char-
acteristics of any species hitherto described. Thus, the
effective use of molecular methods requires the devel-
opment of extensive identification libraries. Further-
more, in many cases, the results of phenotypic and
genotypic tests are not in good agreement, which further
hampers identification [333, 413].

L. monocytogenes, B. cereus, and C. perfringens
in the industrial environment

L. monocytogenes, B. cereus, and C. perfringens are
important pathogens in industrial environments,

Fig. 1 Sources, problems, and control of microbial contaminants
in industrial processes
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especially due to their ability to endure adverse/harmful
process conditions.

L. monocytogenes is a significant food-borne patho-
gen and may cause epidemic and sporadic outbreaks.
The infective dose of L. monocytogenes is related both to
the level of contamination of the food product and to
the host susceptibility. L. monocytogenes is able to grow
across a wide range of temperatures (including very low
temperatures) and pHs; and it is extremely salt-tolerant.
Due to this good tolerance to environmental stress-fac-
tors, L. monocytogenes is difficult to remove from
the factory environment once it has become a part of
the house microbiota. The typical food vehicles for
L. monocytogenes are dairy, meat, and fish products [for
reviews, see 119, 251].

B. cereus is widely distributed in nature (soil contains
105–106 spores/g) and is extremely tolerant to different
environmental stresses. B. cereus is a non-competitive
bacterium. However, food processes can select for it,
since pasteurization is insufficient to kill the spores and
many of the strains are psychrotrophic [18]. Spores of
B. cereus are very hydrophobic [196] and adhere tightly
to surfaces. Vegetative cells, especially cells in the late
stationary growth phase, are also hydrophobic [318].
B. cereus strains may produce emetics and/or entero-
toxins, which leads to food poisoning when a toxin-
producing strain is present at levels >105 cells/g [200,
417]. But strains causing food poisoning at lower cell
levels (103–104 cells/g) have also been found [18].

C. perfringens is mainly restricted to meat products,
since this bacterium is unable to synthesize several
amino acids. C. perfringens spores survive insufficient

heating of the food product, vegetative cells reproduce at
temperatures between 10 �C and 47 �C, and the gener-
ation time in optimal growth conditions is short [18].
Wild strains of C. perfringens are mainly enterotoxin-
negative. However, enterotoxin-positive C. perfringens
strains may cause food poisoning, especially through
cooked food [283]. Aerotolerant vegetative cells survive
for some time under aerobic conditions, but do not
multiply.

Characteristics of L. monocytogenes, B. cereus, and
C. perfringens are presented in Table 1.

Isolation of microorganisms from the industrial
environment

Sample collection and processing

Due to the spatial and temporal heterogeneity and
technical problems related to sampling in the industrial
environment, obtaining a representative sample from
certain foods and food-related industry is a demanding
task. Microbes are often tightly attached to surfaces and
the process equipment may contain parts that are hard
to access, such as dead-ends or bends in pipework.
Different methods, such as swabbing, rinsing, agar-
flooding, and contact agar methods, have been
employed for sampling in the industrial environment
[141, 333, 352, 456, 457]. The conditions during sample
transportation have a great impact on sample quality;
and the time between sampling and processing should be
limited to the minimum.

Table 1 Typical characteristics of Listeria monocytogenes, Bacillus cereus, and Clostridium perfringens. cfu Colony-forming units, ND not
detected

Characteristic L. monocytogenes B. cereus C. perfringens

Minimum water activity
(aw; for growth)

0.92 0.94 0.93

Growth temperature )1.5 �C to 50 �C 4–55 �C 12–50 �C
pH (for growth) pH 4.1–9.4 pH 4.3–9.3 pH 5.5–9.0
Heat resistance of spores
(at 100 �C)

– 3–8 min 0.3–13.0 min

Number of bacteria per
gram in food
reported in infective cases

<10–104 cfu/g (high risk groups)
105–109 cfu/g (normal population)

105–107 cfu/g (diarrheal type)
105–108 cfu/g (emetic type)

106–107 cfu/g

Incubation period 18–20 h (diarrheal type), in other types
even 2 months

8–16 h (diarrheal type)0.5–5.0 h
(emetic type)

8–24 h

Symptoms Diarrhea, fever (healthy adults)Sepsis,
meningitis, fecal infection (adult high
risk groups)Meningitis, sepsis,
pneumonia, fecal infections (new-borns)
Fever, preterm delivery, stillbirth
(during pregnancy)

Abdominal pain, nausea,
vomiting (emetic type)
Abdominal pain, diarrhea,
nausea (diarrheal type)

Abdominal pain,
nausea, acute diarrhea

Food vehicles Ready-to-eat foodstuffs with long
shelf-life (fish, meat products, soft
cheeses) and vacuum-packed products

Meat products, soups, vegetables,
pudding, milk, and milk products
(diarrheal type) Rice, pasta
and noodles (emetic type)

Incompletely cooked
or slowly cooled food
products, meat, poultry,
shellfish, fish, and dairy
products

Occurrence in food biofilms Yes (dairy, fish, meat) ND (dairy) ND
Occurrence in environmental
site biofilms

Yes (plentiful) Yes (non-food) ND
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Recovery of microbial cells from the sample matrix is
a critical step and may lead to biases in the qualitative
and quantitative estimation of the microbial community
[for a review, see 131]. In most cases, samples need to be
macerated and homogenized to liberate the microbial
cells from the sample matrix. The cells in natural sam-
ples, e.g. naturally contaminated food, can be tightly
attached to the matrix [62] and may need vigorous
processing. Maceration of a food matrix may change the
chemical environment of the sample and release sub-
stances that are toxic or inhibitory to some microbes.
Dilution is also a potential bias-causing step and needs
standardization [131]. Several methods have been
developed to concentrate the sample, either to decrease
the detection limit of the target microbes or to overcome
the inhibitory effect of the matrix on the detection
method, e.g. polymerase chain reaction (PCR). Selective
or non-selective enrichment cultures are widely used for
amplifying populations of food pathogens before
detection by cultivation or molecular techniques [62].
However, the enrichment step is not always optimal for
the recovery of the target species and may lead to false-
negative results, especially when a too-selective enrich-
ment medium is used for a sample containing injured
cells [131]. Moreover, enrichment precludes attempts to
quantitate results and, due to differences in growth rate
between different populations, enrichment may lead to a
bias in the recovery of different species [105]. Immuno-
magnetic separation (IMS) is a technique in which
magnetic particles coated with specific antibodies are
used to capture the target cells [312]. IMS has been used
to concentrate food pathogens from sample homogen-
ates or enrichment cultures, followed by detection with
cultivation, immunological, or molecular methods [62,
102, 188, 312]. In addition, centrifugation and filtration
techniques are commonly used in concentrating cells
from certain types of sample.

Microbial cells are exposed to several environmental
stresses during food processing and storage, which may
change the physiological status of the cells. In addition
to culturable and metabolically active cells and autoly-
sing dead cells, microbial cells in many other physio-
logical states can be found in samples [222]. In several
food matrices, the dominant cells are those in a sta-
tionary growth phase, which are still metabolically ac-
tive [131]. Adverse conditions, such as nutrient depletion
and low temperature, can lead to viable but non-cul-
turable cells (VBNC), which do not produce colonies on
media that normally support their growth. However,
VBNC cells remain metabolically active and infective
[222, 273]. Two different types of cells contribute to the
silent but active majority: (1) known species for which
the applied cultivation conditions are just not suitable or
which have entered a non-culturable state and (2) un-
known species that have never been cultured before, due
to a lack of suitable methods [16]. Sub-lethally injured
cells, which do not grow on selective media but grow on
non-selective media, may be present in processed sam-
ples and processed foods [152, 202]. In addition, cells in

certain microbial groups have the ability to form spores,
which are extremely resistant dormant states [222].
VBNC and injured cells may resuscitate or recover
under appropriate conditions [58, 391]. The recovery of
injured cells is highly dependent on the chemical com-
position of the enrichment medium and on the degree of
the injury and the presence of accompanying microbes
[244, 374, 391]. Besides culture, VBNC and injured cells
can be more easily detected by fluorescent staining or
molecular techniques [for reviews, see 152, 223, 274],
which do not rely on the viability of the target cells.

The sample-processing method is dependent on the
properties of the target microbial groups and on the
method used in the subsequent detection step. If detec-
tion is performed by culture-based methods, the target
strains must retain viability and culturability during
sample processing, whereas the inhibitory components
of the sample matrix play an important role in PCR-
based detection. The sample matrix studied plays an
important role when deciding which method to use for
microbial detection and identification.

Cultivation

An effective cultivation procedure for the detection of
food pathogens should suppress competitive microor-
ganisms to the extent that the diagnostic system allows
easy and reliable detection of the target genera/species.
Several selective culture-based techniques are available
for the detection and enumeration of L. monocytogenes,
B. cereus, and C. perfringens in environmental and food
samples; and the international standard methods for the
detection and enumeration of these food pathogens are
based on cultivation [77, 417]. The cultivation and sub-
sequent identification of isolates using conventional
techniques are time-consuming. It may take more than
one week to obtain the complete results [77, 338]. During
the past decade, much effort has been put into the
development of more rapid culture techniques, many of
which are based on the use of fluorogenic and/or chro-
mogenic culture media.

Microbial community analysis by cultivation

An ideal method for studying microbial communities
would detect and enumerate all microbial species present
in the samples with equal efficiency. It was speculated
that many microbial communities are too diverse to be
counted exhaustively, which led to the application of
statistical approaches for the estimation of diversity
[192]. In food microbiology, especially in food hygiene
surveys, cultivation has usually been aimed at the
detection of selected groups/species of microorganisms,
rather than the assessment of the complexity and
dynamics of the microbial community. Culture-inde-
pendent, DNA-based methods have also had limited
applications in the investigation of microbial
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communities in foods and food-related industries; and
the diversity of industrial microbial populations is
therefore poorly known [152].

Microbial community analysis by cultivation is
extremely laborious, especially when complex samples
with high diversity are studied. When cultivation is used
for microbial community analysis, several non-selective
and selective culture media should be included, in
addition to different growth conditions (different tem-
peratures, atmospheres), followed by accurate identifi-
cation of a large number of isolates from each medium,
to get an overview of the diversity of the microbial
population in the sample. The dominant cultivable
population is recovered from non-selective media,
whereas selective media allow the detection of groups or
species that are present at lower numbers. Traditional
methods for the identification of isolates are based on
the assessment of several phenotypic features, which is
often inaccurate and may lead to underestimation of the
species diversity. It is generally known that conventional
cultivation methods recover less than 1% of the total
species of microbes present in environmental samples
[16, 150, 440], partly due to the poor ability of the
routinely used culture media and growth conditions to
recover a large fraction of the microbial population
[315]. In industrial environments and in food matrices,
the processing parameters are likely to select for certain
types of microbes; and the composition of the dominant
microbial groups or species may be predicted more
easily than in complex natural ecosystems. The devel-
opment of culture media and conditions on the basis of
the chemical and physical parameters of the environ-
ment investigated could enhance community analysis by
cultivation. Combining an optimal cultivation technique
with accurate identification of isolates with molecular
microbiological methods would yield useful information
on the diversity and the culturability of the microbes
present in food and industrial environments. Knowledge
of the function of the microorganisms in the ecosystem is
also of utmost importance [315], which necessitates
assessment of the properties of isolates.

Detection of L. monocytogenes by cultivation

In most countries, there is a requirement for the absence
of L. monocytogenes in most food products. However,
since several countries have established quantitative
guidelines for L. monocytogenes in certain types of
foods, such as raw meat and some ready-to-eat prod-
ucts, convenient enumeration methods are also needed.
Several standard methods are available for the detection
of listeria in foods [77, 171, 172, 438]. The detection of
L. monocytogenes in food and environmental samples by
cultivation typically includes enrichment step(s) for
resuscitation of injured cells and concentration of the
cells, followed by plating on selective media and con-
firmation of the tentative identifications of suspected
colonies by biochemical tests [for a review, see 77].

Current conventional culture techniques take approxi-
mately one week to complete [77, 338]. The recent
methodology development has focused on the optimi-
zation of enrichment steps and the development of new
differential culture media to obtain faster and more
reliable detection of L. monocytogenes in food and
environmental samples [338].

An ideal enrichment medium facilitates the recovery
of injured cells and the enrichment of L. monocytogenes
over the competing microbiota [177]. The selective
agents in commonly used Listeria spp.-selective agars
are lithium chloride (LiCl), polymyxin B or colistin,
acriflavine, and cephalosporins [for a review, see 77].
Most conventional selective enrichment broths rely on
nalidixic acid and acriflavine as selective agents; and
cycloheximide and LiCl have also been used in the
enrichment step [77, 139, 416, 439]. In a more selective
enrichment broth, L-PALCAMY, nalidixic acid is
substituted by ceftazidime and polymyxin [416]. The
selective enrichment step used in conventional proce-
dures can be inadequate in facilitating the recovery of
injured cells. The delayed recovery of injured cells in
selective media [202, 435] and the inhibitory effect of
selective agents, e.g. LiCl on some L. monocytogenes
strains [74, 202], have been reported. Optimization of the
composition of enrichment media and the use of a two-
stage enrichment procedure, where selective agents are
added after non-selective pre-enrichment, facilitate the
recovery of injured cells [202, 338, 391]. Enrichment
broths may include an indicator system, e.g. aesculin–
ferric iron, which can be used for presumptive indication
of the presence of Listeria spp. in the sample. Most agars
have an aesculin–ferric iron indicator system and,
additionally, a second indicator system based on man-
nitol fermentation can be added to the media [77].
Besides L. monocytogenes, all other Listeria spp. and
some interfering microbes produce aesculinase, which
complicates the use of aesculin hydrolysis as a differen-
tial characteristic [177].

Highly selective enrichment media are useful for the
detection of Listeria spp. from samples that are heavily
contaminated with interfering organisms [77]. The
detection of L. monocytogenes after enrichment is com-
plicated by the fact that other faster-growing species of
Listeria, such as L. innocua, may overgrow during
enrichment, which may lead to an underestimation of
the presence of L. monocytogenes [40, 257, 319]. In food
samples, non-pathogenic Listeria spp. typically out-
number L. monocytogenes; and it is probable that
L. monocytogenes may not be detected on media that do
not allow differentiation by colony appearance [218]. A
selective agar medium containing sheep blood was
developed to differentiate L. monocytogenes from non-
pathogenic Listeria spp. on the basis of hemolysis [40,
75, 214, 319]. Pathogenic and non-pathogenic Listeria
spp. can be distinguished on the basis of phosphatidyl-
inositol-specific phospholipase C (PIPLC) activity [305].
Chromogenic culture media based on PIPLC activity
were recently developed and applied for the detection of
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L. monocytogenes in food and environmental samples
[177, 218, 338].

The success of enumerating L. monocytogenes by
direct plating is dependent on having a sufficient number
of L. monocytogenes cells in the samples, compared to
the number of interfering organisms [158]. For the direct
enumeration of Listeria spp. from food and environ-
mental samples, spread-plates on selective agar media
[90, 143, 156, 172, 249] or most probable number (MPN)
counts on standard enrichment media [118, 171] can be
used. In addition, a hydrophobic grid membrane filter, a
technique that allows fast presumptive enumeration of
L. monocytogenes from environmental and food sam-
ples, has been developed [113].

Restaino et al. [338] described a L. monocytogenes-
selective detection system (LMDS) containing optimized
steps of pre-enrichment, enrichment, and selective dif-
ferential plating. LMDS allows the specific detection of
L. monocytogenes in food and environmental samples
[177, 338]. Presumptive results for the presence of
pathogenic Listeria spp. in the sample can be obtained
by the detection of fluorescence in the enrichment broth
(containing a fluorogenic substrate based on PIPLC
activity) within 1 day; and the complete detection and
identification takes just 4–5 days [177, 338]. Restaino et
al. [338] reported higher specificity and sensitivity for
isolation of L. monocytogenes from naturally contami-
nated sites by LMDS than by a USDA standard meth-
od. The ability of different conventional standard
procedures to detect L. monocytogenes has proved
comparable [439]. However, the recovery of L. mono-
cytogenes can be enhanced by using several parallel
procedures in the analysis of samples [77, 171].

Detection of B. cereus by cultivation

Several selective and non-selective culture media have
been developed for the detection of B. cereus from foods
[for a review, see 417]. The enumeration of B. cereus in
food and industrial samples is commonly based on a
plate-counting culture technique, except for samples
with low cell numbers (<10 cfu/g) or dehydrated star-
chy foods, for which the MPN method is preferred.
Direct-plating on a non-selective medium such as blood
agar is suitable for the detection of B. cereus in samples
with a high number of target cells, e.g. in foods impli-
cated in outbreaks, whereas selective media are needed
for the enumeration of B. cereus from food and indus-
trial samples, which typically contain higher numbers of
interfering organisms. The selective agents employed in
B. cereus media are polymyxin B or colistin, LiCl, and
actidione. Color indicators, such as phenol red, bro-
mocresol purple, or bromothymol blue, are added to
help in the assessment of colony appearance [417].
Lecithinase production, negative mannitol fermentation,
and nitrate reduction are the key properties used in the
identification of B. cereus in standard procedures [325].
However, lecithinase-negative isolates or isolates show-

ing weak lecithinase activity or other aberrant biotypes,
such as negative nitrate reductase, have been detected
from food and industrial samples and may lead to false-
negative results [182, 325, 417]. Since the selective agents
in various B. cereus selective isolation media are similar,
the performance of different media in the enumeration
of B. cereus from food samples is comparable [182, 200,
417]. A selective and differential chromogenic medium
based on PIPLC activity has been developed for the
enumeration of B. cereus and B. thuringiensis [260].

Detection of C. perfringens by cultivation

Detection and enumeration of C. perfringens from food
and environmental samples is usually based on cultiva-
tion on agar plates, but a MPN technique can also be
applied. Several selective culture media for the detection
and enumeration of C. perfringens are based on sulfite
reduction as a differential characteristic and cycloserine
as a selective agent [21, 161, 276]. Selectivity of cultiva-
tion can be increased by using an elevated incubation
temperature, since C. perfringens is able to grow rapidly
at 45 �C [2, 355]. The shortcoming of the selective cul-
ture and growth conditions is the poor recovery of
injured vegetative cells of C. perfringens [161, 183, 355].
Fluorogenic and chromogenic substrates have been
applied to culture media to enable more reliable pre-
sumptive identification of C. perfringens [21, 260, 355].
Routine methods described for confirming the identifi-
cation of C. perfringens isolates are based on testing the
gas production from lactose and sulfite reduction on
lactose–sulfite medium, or alternatively testing motility
and nitrate reduction on motility–nitrate medium in
combination with lactose fermentation and gelatin liq-
uefaction on lactose–gelatin medium [110]. In a study by
Eisgruber et al. [110], the lactose–sulfite approach
enabled the identification of less than 50% of pure cul-
tures of C. perfringens; and motility–nitrate combined
with lactose–gelatin procedures also failed to identify
some C. perfringens strains. The reverse adenosine 3¢,5¢-
cyclic phosphoric acid test and acid phosphatase reac-
tion proved to be easy to perform and confirmation
reaction tests were reliable [110]. Also, Adcock and Saint
[5] reported acid phosphatase in combination with beta-
galactosidase activity as a reliable and extremely fast test
for the confirmation of C. perfringens.

Fluorescence-based, non-specific detection
of microorganisms

Fluorescence microscopy is widely used in microbial
ecology. There are several advantages in its use. It is fast
and rather easy to use, it allows the visualization of
spatial distribution of cells in the sample and, with a
suitable combination of fluorescent stains, differentia-
tion between viable and dead cells is possible. However,
direct identification of microbes is not possible with
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conventional fluorescent stains. Distinguishing cells on
the basis of morphology is therefore important, because
fluorochromes are not specific for bacterial species or
genera [223].

Microscopy

There are five major attributes of fluorescence as a tool
in microscopy: specificity, sensitivity, spectroscopy,
temporal resolution, and spatial resolution [398].
Important phenomena in fluorescence microscopy are
fading, photo-bleaching of the fluorochrome, and fluo-
rescence-quenching, the loss of fluorescence due to the
interaction of the fluorochromes with other molecules in
the environment. The use of antifading agents can at
least partly solve fading problems [398, 449]. Epifluo-
rescence microscopy [327] and confocal scanning laser
microscopy (CSLM) [50] are used for studying speci-
mens that fluoresce. The excitation spectrum in epiflu-
orescence microscopy is the product of the emission
spectrum of the light source, the bandpass of the filter,
and the reflectance spectrum of the dichroic mirror
[449]. Excitation filters are band-pass filters chosen to
pass light at the absorption spectrum of fluorochrome,
while blocking the longer wavelength light of the fluo-
rescence spectrum. In contrast, emission filters are cho-
sen to pass the light in the emission spectrum, while
blocking the light of the excitation spectrum [398]. In
epifluorescence microscopy, multilayered samples, e.g.
biofilms, can only be analyzed two-dimensionally [459].
In CSLM, a specimen is scanned with a focused laser
beam and fluorescent signals are detected by a photo-
multiplier. A confocal pinhole allows only the signals
arising from a focused plane to be detected. CSLM al-
lows detailed, non-destructive examination of thick
microbial samples, e.g. biofilms. Thus, the impact of
various biocides (for example) can be studied at different
optical sections in more detail than with epifluorescence
microscope [24, 60, 72, 88, 234; for a review, see 235]. In
addition, determination of the three-dimensional rela-
tionship of cells and three-dimensional computer
reconstruction from optical thin sections becomes pos-
sible [60, 234].

The analysis of fluorescence from samples under the
microscope can be evaluated either manually or with
computer-aided image analysis programs. Manual
evaluation is usually chosen when evaluating whether
microbes are present in the sample or not. When more
information is needed, image analysis is normally used.
Image analysis includes image acquisition, processing,
and segmentation, object recognition and measurement,
and data output [60]. The image analysis systems allow
rapid quantification of many parameters, which could
hitherto only be described qualitatively, e.g. fluorescence
intensity, quantification of different sizes of microor-
ganisms, and percentage of area covered by biofilm [45,
221, 284, 450]. However, the analysis of particles with
different brightness is still problematic and thresholds

have to be established for deciding what is a bacterium
and what is background [45].

Flow cytometry

Flow cytometry (FCM) combines the advantages of
microscopy and biochemical analysis for the measure-
ment of the physical and chemical characteristics of
individual cells as they move in a fluid stream past
optical or electronic sensors [76, 98, 99, 100]. Emitted
light is detected by photodetectors and data are analyzed
by computer-aided means. FCM permits simultaneous
measurement of multiple cellular parameters, both
structural and functional, such as cell size and DNA
content [211, 402, 433], and allows rapid characteriza-
tion of individual cells (more than 103 cells/s) in homo-
geneous and heterogeneous populations [52, 99, 211,
402, 433]. FCM has a higher throughput and can more
readily be automated than microscopic quantification
of microbial populations [433]. Furthermore, FCM
requires only small sample sizes [29].

Fluorescent stains

Fluorochromes are stains or probes that are added to
cells to obtain a fluorescent signal [398]. Detection of
labeled molecules depends on both the intensity of flu-
orescence and the ability to resolve specific fluorescence
from background fluorescence [109]. The use of fluo-
rescent stains, with the ability to distinguish between
living and dead bacteria, is becoming increasingly
important [for a review, see 274]. The use of fluorogenic
indicators of metabolic activities in microscopy provides
information on the physiological status of individual
cells [271, 464]. Moreover, the fluorescent nature of the
compounds greatly facilitates their use in studying bac-
teria associated with optically nontransparent surfaces
[271, 342, 362, 368, 457, 464].

Enumeration of bacteria

Numerous fluorescent stains are used for the detection
of both biofilm and suspension samples, to study the
viability and/or the total number of microorganisms.
The most commonly used stains for the detection of
total number of bacteria are acridine orange (AO) and
4¢,6-diamidino-2-phenylindole (DAPI) [223].

AO binds to DNA and RNA [390]. The distribution
of dead, metabolically inactive but living, and living cells
cannot be determined by the standard technique of AO
staining, because DNA retains its staining properties in
nonviable cells [223, 455]. The emission spectra of AO
upon binding to nucleic acids are highly dependent on
substrate structure, i.e. AO complexed with single- and
double-stranded nucleic acid emits red and green fluo-
rescence, respectively [284]. Since AO is known to stain
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all organic material—e.g. food residues—it has been
used for studying biofilms and environmental samples
[87, 180, 181, 455] and to enumerate the total number of
bacteria, while using a culture technique to determine
the number of viable and culturable bacteria [42, 68,
106]. AO has also been used for enumeration of
L. monocytogenes cells, both in biofilms [185, 254, 457]
and in suspension [37].

DAPI is a nonintercalating, DNA-specific stain [223,
328, 402], which fluoresces blue or bluish-white when
bound to DNA. When unbound or bound to non-DNA
material, e.g. polyphosphates, it may fluoresce in various
shades of yellow. As with AO, DAPI cannot be used for
viability-staining [223]. DAPI is rapidly replacing AO as
the most commonly employed bacterial stain for a wide
range of sample-types. With both DAPI and AO, bac-
teria are identified on the basis not only of color but also
of size and shape. DAPI has been used for the enu-
meration of L. monocytogenes [37, 63] and B. cereus [31,
431] cells. DAPI has also been used as a counterstain
with Evans blue [26], erythrosine B (ERB) [219], 5-cya-
no-2,3-ditolyl tetrazolium chloride (CTC) [49, 51, 190,
271, 342, 362, 388, 457, 463], and iodonitrophenyltet-
razolium (INT) [103].

Viability stains

There are several stains that target either viable bacteria
[e.g. CTC, INT, rhodamine 123, fluorescein diacetate
(FDA), carboxy-FDA, ChemCrome B] or nonviable
bacteria [e.g. rhodamine B, calcofluor white, Evans blue,
bis-1,3-dibutylbarbituric acid trimethine oxonol (oxonol
dye), propidium iodide (PI), ERB]. The two most com-
monly used viability-staining systems for industrial
samples are CTC-DAPI and the LIVE/DEAD BacLight
viability kit (Molecular Probes, Eugene, Ore.).

CTC is a monotetrazolium redox stain that produces
a red-fluorescent formazan when it is chemically or
biologically reduced [342, 463]. CTC can be chemically
reduced in a low-redox environment and hence its use is
restricted to aerobic or microaerophilic systems. Usu-
ally, CTC is used in connection with DAPI [342]. With
computerized image analysis, it is possible to scan a
colonized surface and rapidly quantify the respiratory
activity of CTC-stained cells [362]. The utilization of
CTC allows the clear resolution of individual cells by
epifluorescence microscopy [464]. CTC can also be used
for non-destructive analysis of the architecture and dis-
tribution of physiological activity within a biofilm [362].
The CTC method provides a convenient and rapid ap-
proach for e.g. quantification of the effect of biocides
[51, 190, 362, 388, 457, 460, 464]. CTC-DAPI has been
used for viability analysis of L. monocytogenes cells in
biofilms [271, 457] and in suspension [271].

Molecular Probes¢ LIVE/DEAD BacLight viability
kit provides a two-color fluorescence assay of bacterial
viability. It has been proven useful for a diverse array of
bacterial genera, including both Gram-negative and

Gram-positive species [20]. The stains in the LIVE/
DEAD kit are a membrane-permeating green fluores-
cent nucleic acid dye, SYTO 9, which stains viable cells,
and a red fluorescent nucleic acid dye, PI, which does
not permeate membranes, but stains dead cells. The
background remains virtually nonfluorescent. Due to
the interference of biofilm matrix polysaccharides and
slime with the stain, LIVE/DEAD staining is not usually
suitable for biofilms attached to a surface [271]. LIVE/
DEAD samples should be analyzed immediately,
whereas samples stained with CTC-DAPI and thereafter
filtered on a microscopic membrane can be stored for
several weeks. Therefore, CTC-DAPI offers a more
convenient tool for viability investigation [271]. The
LIVE/DEAD kit has been used for viability analysis of
L. monocytogenes cells in suspension [203, 271, 457].

Molecular techniques in bacterial detection
and identification

A molecular technique used for the detection of patho-
gens must be capable of detecting low numbers of target
bacteria in samples which may contain a considerable
background of interfering microorganisms and several
matrix-derived compounds that may hamper the detec-
tion. In microbial community analysis, the method
should allow the detection of different groups or species
present in the ecosystem with similar efficacy, to avoid
biases in the evaluation of species distribution and the
complexity of the microbiota. Biases may be introduced
by initial sample-handling [294] and during the extrac-
tion of nucleic acids from microbes in the sample.

Molecular techniques can be utilized in the detection
and identification of microbes in two ways: (a) identifi-
cation is performed directly from sample material, or (b)
identification is based on combined culture and molec-
ular detection. The sample matrix studied plays an
important role when the decision between the two
choices is made. If the matrix is known to contain fac-
tors that can inhibit a PCR reaction (for example) and
are difficult to remove, it is often best to use the com-
bination of a culture technique and a suitable molecular
technique. There are two major techniques applied in the
molecular detection and identification of bacteria: PCR
and hybridization. When molecular tools were first
introduced for the detection and identification of
microbes, hybridization methods were widely applied.
The rapid evolution of PCR techniques led to the pres-
ent situation, where hybridization is mainly used in
combination with PCR. However, a technique called in
situ hybridization, in which bacteria are detected in their
natural microhabitat, proves useful in applications
where enumeration of the target organisms is warranted.
Through its automation of the procedure, the recent
development of DNA microarrays allows the simulta-
neous identification of a huge number of specific
sequences by hybridization [165].
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Release of nucleic acids from sample material

The reliable and reproducible lysis of microbial cells and
the extraction of intact nucleic acids from environmental
and industrial habitats is a demanding task [423, 446]. In
addition, the removal of substances which may interfere
with hybridization or PCR amplification, such as food
components or process additives, may be difficult [446].
The procedures for cell lysis can be enzymatic (e.g.
lysozyme, lyticase, proteinase), chemical (e.g. detergents,
guanidium isothiocyanate), or mechanical (e.g. freeze–
thaw/freeze–boil cycles, bead-beating, microwave heat-
ing) [for reviews, see 62, 347]. In many cases, e.g. in the
identification or fingerprinting of isolates obtained by
culture, the crude cell lysate can be used directly in a
subsequent molecular analysis. However, since food and
environmental samples may contain inhibitory com-
pounds [233, 350, 364], further processing of the cell
lysate is often necessary when direct molecular detection
methods are applied. Processing steps include the
removal of proteins, which is commonly done by phe-
nol–chloroform extraction [432] or salt saturation [169],
followed by precipitation of nucleic acids by ethanol,
isopropanol, or polyethylenglycol precipitation, and
purification of the nucleic acids [for a review, see 347].
When the metabolically active fraction of the commu-
nity is of interest, the analysis should be performed with
RNA rather than DNA. However, while extracting
RNA from industrial and environmental samples, spe-
cial attention should be paid to avoiding the degradation
of RNAs with RNAses during the extraction procedure
[for a review, see 423]. There are several articles
describing different RNA extraction procedures [e.g.
123, 195, 285]. Several commercial kits are also available
for DNA and RNA extractions.

Each step included in the sample preparation reduces
the nucleic acid yield and decreases the sensitivity of
detection. In food microbiology, a large effort is put into
optimizing sample manipulation prior to cell lysis, to
concentrate the target cells and to remove inhibitory
substances from the sample matrix. A short enrichment
culture and harvesting the bacterial cells from the sam-
ple by centrifugation, filtration, and immunomagnetic
beads are applied to sample-processing in the detection
of food-borne pathogens [177, 232, 307, 312, 437; for a
review, see 62]. The sensitivity of the molecular method
can be improved by an enrichment culture [6, 437], but
this also precludes attempts to quantitate the number of
target organisms in the sample. It should also be noted
that some enrichment media might contain substances
inhibitory to PCR [437].

Target sequences for molecular detection

Environmental microbiological studies are often based
on ribosomal RNA (rRNA) or rDNA sequences. rDNA
and rRNA are ideal targets for nucleic acid probes and
primers for several reasons: (1) they are functionally

conserved and present in all organisms, (2) 16S and 23S
rDNA are composed of sequence regions with higher
and lower evolutionary conservation, (3) 16S rDNA
sequences have already been determined for a large
fraction of the validly described bacterial species, and (4)
the natural amplification of rRNA with high-copy
numbers per cell (usually more than 10,000) greatly
increases the sensitivity of rRNA-targeted techniques
[384]. 16S rDNA sequences can be used to infer phylo-
genetic relationships and to identify unknown microbes
by database comparisons [310]. Due to the patchy evo-
lutionary conservation of rDNA sequences, the speci-
ficity of rDNA- or rRNA-targeted detection or
identification can be tailored to the needs of the inves-
tigator, reaching from the subspecies to the kingdom
level [10, 386]. It has also been proposed that rRNA
content is appropriate for assessing changes in meta-
bolically active bacterial populations, since rRNA con-
tent depends on bacterial activity [430]. In contrast to
16S rDNA, the intergenic spacer region (ISR) between
16S and 23S rDNA is highly variable in length and often
shows species-specific sequence traits useful for design-
ing molecular markers. Hence, in many cases, the ISR
sequences are more applicable targets for diagnostic
PCR-amplification than 16S rDNA [35, 210; for a
review, see 163]. In addition, ISR amplicons can be
separated into fingerprints by conventional electropho-
resis [122].

Besides rDNA, other target genes can be used for the
molecular detection of selected microbial groups/species
from food and industrial samples. Genes associated with
virulence factors, such as the toxin-producing listeriol-
ysin O (hlyA) gene in L. monocytogenes [38], are com-
monly used for the detection of food-borne pathogens.
In addition, genes coding for physiological properties,
e.g. the cold-shock protein genes present in psychro-
trophic B. cereus-group strains [137], can be used as
target molecules for detection. In addition to known
genes, species-specific sequences selected on the basis of
random amplified polymorphic DNA (RAPD) analysis
can be used [114]. However, this approach is hampered
by the fact that relatively little sequence data is available
from genomes, which results in difficulties in both cre-
ating the specific primer pairs and evaluating their
specificity.

Techniques

PCR amplification

In PCR, a thermostable DNA polymerase enzyme is
used to exponentially amplify a target DNA sequence
defined by two oligonucleotide primers [288, 289, 290,
351]. The amplified DNA fragment can be visualized
either by agarose gel electrophoresis, which allows size-
determination of the PCR product, or by hybridizing the
PCR product with a labeled probe. Combining PCR
with a hybridization step improves the sensitivity and
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specificity of the assay. PCR is very sensitive and small
amounts of contaminating DNA carried from one run to
the next (for example) can give false-positive results.

Many types of sample matrix (e.g. foods) contain
factors which can either totally inhibit the PCR reaction
or cause partial inhibition, leading to non-exponential
amplification of the target DNA [233, 350, 364]. Inhi-
bition may be avoided or reduced by pre-PCR sample
manipulations, such as dilution of the sample material,
short enrichment culture, extraction of the DNA from
the sample, or harvesting the bacterial cells from the
sample by centrifugation, filtration, or immunomagnetic
beads coated with monoclonal antibodies specific to the
target organism. However, even partial inhibition of the
PCR reaction inevitably leads to reduced sensitivity and
excludes the possibility of performing quantitative PCR.
To minimize the risk of obtaining false-negative ampli-
fication results, suitable external standards should be
used, which are coamplified together with the target
DNA in the PCR reaction [337]. The sensitivity of the
PCR assay can be improved by enrichment culture prior
to PCR [6, 437], but this also precludes attempts to
quantitate the number of target organisms in the sample.
Thus, amplification of target DNA sequences from
sample materials containing inhibitory factors for PCR
can provide information on the presence, but not on the
numbers and usually not on the viability of target
organisms (except in the case where an enrichment step
is included). It should also be remembered that PCR
detects nonviable cells, as long as intact target nucleic
acid sequences are available as templates [216].

When PCR is applied to environmental or industrial
samples, several problems arise, including inhibition of
PCR amplification by co-extracted contaminants, dif-
ferential PCR amplification, formation of PCR artifacts,
e.g. chimeric molecules (leading to the description of
non-existing species), and DNA contamination. It
should also be noted that 16S rDNA sequence variations
due to rrn operon heterogeneity can interfere with the
analysis [for a review, see 423]. When PCR is used in
direct bacterial detection from sample materials con-
taining other microbes, validation of the protocol
applied is of utmost importance. The chosen method has
to be tested on a large panel of strains representing the
target species, closely related species, and other microbes
commonly present in the sample material. This, together
with the fact that different methods have to be applied to
overcome the inhibitory effects of different sample ma-
trixes, necessitates the use of tailor-made approaches for
each microbe–sample matrix pair. A positive control for
each analysis is important for confirming that inhibitory
substances do not interfere with the detection and cause
false-negative results [177].

Quantification of the initial amount of target is not
possible in traditional end-point PCR, because the
amount of PCR product is determined when the reaction
has already reached the plateau phase. In real-time PCR,
the amount of PCR product is measured at each cycle
and also during the exponential phase, which enables the

quantification of the initial template amount. The real-
time measurement is based on fluorescent dyes that
either bind to double-strand DNA or hybridize to a
specific sequence. Since real-time PCR is especially vul-
nerable to inhibitory compounds, internal standards
should always be used when complex sample matrixes
are studied [337].

There are numerous articles reporting the identifica-
tion of L. monocytogenes by PCR amplification. Most of
the reported studies used PCR primers specific for frag-
ments of the listeriolysin O (hlyA) gene [6, 34, 38, 41, 43,
47, 71, 96, 130, 133, 140, 175, 176, 191, 207, 241, 256, 299,
300, 302, 303, 316, 349, 401, 429, 437] and/or PCR
primers specific for the invasion-associated protein (iap)
gene [6, 55, 56, 164, 264, 265, 266, 267, 299, 300, 426]. A
short enrichment period before PCR amplification
greatly improves the sensitivity of the assay [6, 130].
Other PCR protocols using inlA [9, 207] and genes
encoding flagellin (flaA) [389], fibrinectin-binding protein
(fbp) [149], aminopeptidase [452], transcription activa-
tion protein (prfA) [71, 101, 353, 376, 443], and 16S
rRNA [233, 434] as targets for specific detection of
L. monocytogenes have also been introduced.
Another approach is the use of 16S–23S rDNA spacer
regions for Listeria genus-specific and L. monocytogenes
species-specific PCR assays [155]. Multiplex-PCR tar-
geting different sequences of iap [56], hlyA and 23S
rDNA [191], or hlyA and 16S rRNA [445] have been
developed for the rapid identification of L. monocytoge-
nes. PCR protocols have been used to identify Listeria
spp. from water, skimmed and raw milk, ice-cream,
cheese, soft cheese, mozzarella cheese, cooked sausage
products, fermented sausage, ham, pork, ground beef,
minced beef, chicken skin, turkey, raw and cooked
poultry products, seafood, raw fish, cold smoked fish,
coleslaw, cabbage, lettuce leaves, and vegetables [6, 41,
47, 71, 101, 130, 133, 140, 164, 175, 176, 186, 191, 233,
236, 265, 267, 299, 300, 302, 303, 316, 353, 376, 401, 434,
437, 445].

For the PCR detection of B. cereus, various
sequences are used as targets, including genes encoding
16S rRNA, hemolysin BL, cereolysin AB, non-hemolytic
enterotoxin, enterotoxin T, gyrase B, IS231, and 16S-
23S rDNA spacer region [166, 167, 173, 187, 226, 261,
404, 422, 461]. Recently, Bach et al. [31] developed a
neutral metallopeptidase gene-based real-time quantita-
tive PCR assay for quantification of B. cereus. It was
noted that PCR analysis of the 16S–23S rDNA spacer
region reveals identical patterns for B. cereus and
B. thuringiensis [166] and that discrimination between
B. cereus and B. thuringiensis is difficult when gyrB gene-
based primers are used [66]. PCR is used to discriminate
psychrotolerant and mesophilic strains of the B. cereus
group [422], to investigate the growth, sporulation, and
germination of B. cereus strains isolated from dairy and
meat products [17], and to detect B. cereus from milk
[226, 367]. Tsen et al. [404] developed a multiplex-PCR
assay targeting simultaneously both the enterotoxin and
16S rRNA genes of B. cereus.
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There are PCR assays targeting 16S rDNA and genes
encoding alpha-, beta-, epsilon-, tau-, and enterotoxins
for the rapid identification of C. perfringens strains from
food, animal, and clinical specimens [22, 23, 57, 217,
220, 230, 253, 268, 326, 395, 406, 436]. There is a duplex
PCR assay targeting alpha-toxin or the phospholicase C
and enterotoxin (cpe) genes for the rapid detection and
identification of enterotoxigenic C. perfringens strains in
food and fecal samples [25, 117, 395, 396]; and there is a
multiplex PCR assay targeting simultaneously five toxin
genes for the analysis of clinical C. perfringens isolates
[381].

Also, broad-range PCR primers, targeting many
bacterial species of interest, have been developed for the
detection of pathogenic bacteria, including L. monocyt-
ogenes and Bacillus spp. The essential part of this assay
is the confirmation of the target species/genera with
specific probes [159]. There are also PCR assays for
determining the total bacterial load, using real-time
PCR with a universal probe and primer set [297]. An-
other new approach to quantitate environmental DNA
sequences involves a multiplexed, bead-based method
with flow cytometry [382].

Hybridization

Hybridization techniques can be used in bacterial iden-
tification either alone or combined with a preceding
PCR step. In hybridization, a labeled probe (a denatured
DNA fragment varying in size between tens of basepairs
to kilobasepairs) anneals to a denatured target DNA
(genomic DNA or PCR amplification product) with
sequence homology [10, 380]. Target DNA can be di-
rectly blotted onto a membrane, or if size information of
the hybridization target is warranted, the target DNA is
first run through agarose gel and then transferred to a
membrane. Detection of hybrids is based on a radioac-
tive signal, fluorescence, or color reaction, depending on
the type of the label. By determining the intensity of the
hybridization signal, the number of target organisms can
be estimated [123, 122, 336, 364, 366, 386; for a review,
see 311]. With dot-blot hybridization, nucleic acids can
be fairly rapidly analyzed for the presence of specific
sequences [for reviews, see 357, 365]. This technique is
commonly used to confirm the identity of PCR products
[38, 43, 79, 245, 367, 437]. A miniaturized and auto-
mated form of dot-blot hybridization is called a micro-
array (see DNA microarray, below).

Hybridization probes targeting 16S rDNA, the liste-
riolysin or enterotoxin genes, iap, inlA, prfA, the 16S–
23S rRNA spacer region, or genomic sequences related
to the expression of surface antigens have been devel-
oped for the detection and identification of L. mono-
cytogenes [47, 83, 84, 154, 164, 242, 320, 339, 426, 434,
443]. Detection of B. cereus with hybridization is mainly
performed to confirm the results obtained with specific
PCR [79, 367, 437]. 16S rDNA, phospholipase and
cereolysin AB genes, and 16S–23S rDNA spacer region

sequences are used as probes in B. cereus detection [79,
334, 367, 399]. Hybridization is used e.g. to detect
B. cereus from traditional Indian foods [334] and for
enterotoxic B. cereus detection [261]. DNA hybridiza-
tion has also been used to identify enterotoxic C. per-
fringens strains [85, 411] and to detect enterotoxic
C. perfringens from Mexican spices and herbs [343] and
from the feces of Mexican subjects [418].

Fluorescent in situ hybridization

The detection of whole-bacterial cells via labeling of
specific nucleic acids with fluorescence-labeled oligonu-
cleotide probes is called fluorescent in situ hybridization
(FISH). FISH requires no cultivation and cells can be
fixed before analysis, enabling the storing of samples
prior to analysis [11, 12, 13, 14, 15, 94, 262, 383]. The
whole-cell or in situ hybridization technique is now a
much-used molecular tool in environmental microbiol-
ogy, since organisms or groups of organisms can be
identified with minimal disturbance of their environment
and spatial distribution. Due to the fact that environ-
mental conditions influence the cellular rRNA content,
the amount of rRNA is considered to correlate with the
growth rate [329]; and in situ hybridization using rRNA-
targeted oligonucleotides can therefore be a powerful
tool for the assessment of bacterial activities.

FISH in combination with epifluorescence micros-
copy is a widely applied method to analyze microbial
communities [16]. The sensitivity and objectivity can be
greatly enhanced by digital image analysis [335]. The
application of FISH combined with conventional fluo-
rescence microscopy for the analysis of complex micro-
bial biofilms can be impaired by biofilm thickness,
background fluorescence caused by humic substances or
detritus, and the inherent autofluorescence of photo-
trophs. These problems can be circumvented by using
FISH with CSLM [425; for a review, see 427]. The
advantage of CSLM for the study of complex environ-
ments is that undisturbed samples can be analyzed
without removal or homogenization of biofilm or other
material [234]. Sample thickness is not limiting, since
light from out-of-focus planes is excluded [263].

There are only a few published studies in which FISH
has been used to identify Clostridium spp., Listeria spp.,
or Bacillus spp. This is most likely caused by the fact
that FISH is much more difficult to perform with Gram-
positive bacteria than with Gram-negative bacteria, due
to the permeability problems associated with Gram-
positive bacteria [138, 258]. Furthermore, FISH cannot
be used to quantify bacterial spores [377]. FISH has
been used to study the growth of B. cereus inoculated on
tomato seeds [377] and to detect an uncultured Bacillus
sp. from Dutch grassland soil [126]. FISH has also been
used to identify the Clostridium histolycum-group,
including C. perfringens [138] and Clostridium spp. [205]
from human fecal samples. In addition, FISH has been
used to detect Clostridium spp. from rice straw in anoxic
paddy soil [441].
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Recently, a microscopic method combining FISH
and microautoradiography was developed [240, 314].
With this combination, it is possible to simultaneously
determine the identities, activities, and specific substrate-
uptake profiles of individual microbial cells within
complex microbial communities under different envi-
ronmental conditions [240].

DNA microarray

DNA microarrays facilitate the study of large numbers
of genes simultaneously by hybridization of DNA or
mRNA to a high-density array of immobilized probes
[134, 248, 363]. The DNA microarray is basically a
miniaturized form of dot-blot hybridization in a high-
throughput format. There are two major types of DNA
microarrays: an oligonucleotide-based array and a PCR
product-based array. Microarrays allow the production
of a gene expression profile or signature for particular
organisms under certain environmental conditions.
These can be used to study variability between the same
or related species and between ancestor and descen-
dants. As a result, microarrays provide information on
the molecular basis of microbial diversity, evolution,
and epidemiology [for reviews, see 32, 95, 145, 252, 462].
To our knowledge, there is a single published study
indicating the successful use of an oligonucleotide
microarray for the differentiation of closely related
Bacillus spp. [247] and there is one study in which
microarray was used for the identification of C. per-
fringens [451]. However, the genome projects of L.
monocytogenes [153] and C. perfringens [375] are now
complete, which will help the build-up of specific
microarrays for these species.

Genetic fingerprinting techniques

Genetic fingerprinting techniques can be used to char-
acterize bacterial communities or single bacterial iso-
lates. The genetic fingerprinting of microbial

communities provides a pattern or profile of the com-
munity diversity, based upon the physical separation of
unique nucleic acid sequences [385]. Community analysis
techniques are relatively easy and rapid to perform and
they allow simultaneous analysis of multiple samples,
enabling the comparison of the genetic diversity of
microbial communities from different habitats, or the
study of the behavior of individual communities over
time. Community analysis can be performed with tech-
niques such as denaturing-gradient gel electrophoresis
(DGGE), temperature-gradient gel electrophoresis
(TGGE), and single-stranded conformational polymor-
phism (SSCP). There is also a new approach based on
heteroduplex mobility analysis of 16S rDNA fragments
for targeted detection of sub-populations of bacteria
within diverse microbial communities [405].

Fingerprinting of bacterial isolates can be performed
by a variety of techniques, including e.g. ribotyping,
amplified ribosomal DNA restriction analysis (AR-
DRA), pulsed-field gel electrophoresis (PFGE), RAPD,
repetitive element sequence-based PCR (rep-PCR), and
amplified fragment length polymorphism (AFLP). All
these techniques aim at differentiating bacterial isolates
at the subspecies level, preferably even at the strain-level.

An overview of the genetic fingerprinting techniques
described in this review, with their advantages and lim-
itations, is presented in Table 2.

Community analysis

Denaturing/thermal gradient gel electrophoresis

In DGGE [129] and TGGE [348], PCR-amplified DNA
fragments of the same length but with different DNA
sequences can be differentiated [70, 129, 296, 348]. Sep-
aration in DNA fragments is based on the electropho-
retic mobility of a partially melted double-stranded
DNA molecule in polyacrylamide gels containing either
a linear gradient of DNA denaturants (a mixture of urea
and formamide in DGGE) or a linear temperature gra-
dient (TGGE). Partially melted DNA fragments are held

Table 2 Overview of genetic fingerprinting techniques described in
this review. AFLP Amplified fragment length polymorphism, AR-
DRA amplified ribosomal DNA restriction analysis, DGGE dena-
turing-gradient gel electrophoresis, PFGE pulsed-field gel

electrophoresis, RAPD randomly amplified polymorphic DNA, rep
repetitive element sequence, SSCP single-strand conformational
polymorphism, TGGE temperature-gradient gel electrophoresis

Technique Advantages Limitations

Community level
DGGE/TGGE and SSCP Community structure and dynamics can be studied,

Identification of community members possible
Only those populations making up over 1%
of the total community can be detected

Strain level
Ribotyping Can be automated, Good discriminatory power,

Can be used for bacterial identification,
Expensive, laborious, and manually slow to perform

ARDRA Fairly simple and fast Limited discriminatory power
PFGE Very high discriminatory power Expensive, Slow to perform
RAPD Fast, simple, and cost-effective Reproducibility problems possible
rep-PCR Fast, simple, and cost-effective Reproducibility problems possible
AFLP Good discriminative power Expensive, Laborious

339



together with a G+C-rich oligonucleotide, a GC-clamp.
Therefore, each denaturing fragment generates only a
single band in the gel [for a review, see 294]. DGGE/
TGGE performed after PCR gives an insight into the
predominant microbial populations; and DGGE/TGGE
performed after reverse transcriptase (RT)-PCR helps
identify the predominant active microbial populations
[104, 123, 124, 400, 466]. DGGE/TGGE can also be
used in combination with quantitative RT-PCR to
quantify rRNA sequences in complex bacterial com-
munities [125].

DGGE/TGGE analysis combines a direct visualiza-
tion of bacterial diversity and the opportunity to sub-
sequently identify community members by DNA
fragment sequence analysis or hybridization with spe-
cific probes [292, 293]. Sequence analysis or hybridiza-
tion performed after DGGE/TGGE has detected
Bacillus-like sequences and Clostridium spp. in various
environmental and clinical samples [104, 121, 127, 128,
198, 201, 231, 243, 317, 345, 358, 378, 397, 441, 465].

DGGE/TGGE has some specific limitations. DGGE/
TGGE can be used to separate only relatively small
fragments [295] and it displays only the rDNA ampli-
cons obtained from the predominant (over 1% of the
population) species present in the community [291, 292,
294]. The presence of heterogeneous 16S rRNA genes
(16S rRNA genes that exhibit small sequence variations
in the genome of a given strain) can result in several
bands in a DGGE/TGGE profile [125, 306, 356, 466].
Furthermore, a single band may represent more than
one strain [124, 127, 356, 371, 409]. The construction of
16S rDNA clone libraries and the screening for different
clones by DGGE may overcome these deficiencies [127,
128, 148, 294, 358].

Single-stranded conformation polymorphism

SSCP analysis detects sequence variations between dif-
ferent DNA fragments, which are usually PCR-ampli-
fied from variable regions of the 16S rRNA gene. The
technique is based on the fact that a single base modi-
fication can change the conformation of a single-strand
DNA molecule, altering the migration speed of the
molecules in a non-denaturing gel [313, 344]. DNA
fragments of the same size but with different base
composition can thus be separated [170].

The limitations of the SSCP method are similar to
those of DGGE/TGGE. The discriminatory power and
reproducibility of SSCP analysis is usually most effective
for fragments up to 400 bp in size, depending on the
length of the fragment studied, the position of the
sequence variations in the gene studied, and the test con-
ditions [413]. In addition, PCR-SSCP detects bacterial
populations that make up 1% or more of a bacterial
community [239]. A major limitation of SSCP for com-
munity analysis is the high rate of DNA strand-annealing
after the initial denaturation during electrophoresis [372].

Besides community studies, PCR-SSCP analysis can
be adapted for the rapid identification of Gram-negative

and Gram-positive bacteria at the genus and species
levels [48, 79, 91, 239, 241, 260, 369, 415, 429, 447], to
discriminate between B. cereus and B. subtilis [448], and
for detecting Listeria spp. [241, 260, 415, 429, 447, 448],
Clostridium-related bacteria [91], and Clostridium spp.
[92, 447].

Typing of microorganisms

Prior to molecular techniques, phenotypic methods such
as biotyping and serotyping were used for bacterial
strain differentiation. These techniques are still used
today, but more reliable and often less laborious fin-
gerprinting can be achieved with molecular techniques.
Regardless of whether phenotypic or genotypic tech-
niques are applied, fingerprinting is preceded by culture
and single-colony subculture steps. Thus, even though
PCR and hybridization can be used both in bacterial
detection and fingerprinting, the techniques applied
differ in a profound way. While detection methods are
able to find the target organisms in a sample containing
hundreds of other bacteria, fingerprinting methods are
not genus- or species-specific and can therefore only be
applied to pure bacterial cultures. When molecular
techniques were first applied for bacterial fingerprinting,
both conventional restriction endonuclease analysis
(REA) of genomic DNA and plasmid profiling were
used. Both techniques have their limitations. With con-
ventional REA, complicated patterns with hundreds of
restriction fragments are obtained, which makes the
profile comparison difficult. With plasmid profiling, far
simpler profiles are obtained, but this technique is suit-
able only for bacteria carrying (several) plasmids [for a
review, see 413].

Ribotyping

When conventional REA is combined with a hybrid-
ization step, a far simpler and thus more easily compa-
rable fingerprint is obtained. This technique, where
genomic restriction fragments are separated by gel
electrophoresis, transferred to a Nylon membrane, and
hybridized to a probe, is called restriction fragment
length polymorphism (RFLP). By far the most widely
applied RFLP technique is (classic) ribotyping, in which
rRNA genes (usually both 16S and 23S rRNA genes, or
a whole rRNA operon containing 16S, 23S, and 5S
rRNA genes and their spacer regions) are used as a
probe. Since a rRNA operon contains both conserved
and hypervariable regions, the same probe (e.g. origi-
nating from Escherichia coli) can be used in ribotyping
different bacterial species [160]. The strain differentiation
in ribotyping is thus based on the unique hybridization
pattern (fingerprint) obtained and not on the specificity
of the probe. Differences in the hybridization patterns
originate from restriction endonuclease recognition site-
variation within variable regions of rRNA genes and
their spacer regions. The discriminatory ability of
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ribotyping is greatly influenced by both the probe (whole
rRNA operon vs a single gene) and the restriction
endonuclease applied. Obviously, the best discrimina-
tion is obtained when the whole operon is used as a
probe and an optimal restriction endonuclease for each
bacterial genus is selected from a panel of restriction
endonucleases tested. However, when ribotyping is used
as a taxonomic tool, riboprints of isolates representing
different genera and species are compared; and thus the
same restriction endonuclease has to be applied for all
bacteria. The invention of an automated ribotyping
system (Riboprinter; Dupont Qualicon, Wilmington,
Del.) greatly facilitated bacterial fingerprinting, thus
allowing larger numbers of bacterial isolates to be
characterized and compared than when ribotyping is
performed manually.

Classic ribotyping has been used to characterize
C. perfringens isolates associated with food-borne cases
and outbreaks, e.g. ground meat [225, 359, 360]. Ribo-
typing has also been used for B. cereus typing [19, 325,
332, 361]. There are several publications on L. mono-
cytogenes ribotyping, including the characterization of
isolates from the smoked fish, meat, poultry, and sea-
food industries, from different foods, and from human
and animal listeriosis cases [8, 33, 89, 142, 157, 204, 207,
209, 277, 304, 308, 393, 394].

Amplified rDNA restriction analysis

In addition to classic ribotyping, rDNA-based finger-
prints can be obtained by a technique called ARDRA.
In ARDRA, bacterial rRNA gene(s) are first amplified
by PCR, using conserved sequences of rDNA as prim-
ers. The PCR amplification product is then digested with
restriction endonuclease and restriction fragments are
resolved electrophoretically to obtain a fingerprint [414].
Although ARDRA fingerprinting is faster to perform
than classic ribotyping, its discriminatory power is often
inferior to that of ribotyping. This is due to the fact that
smaller areas of the rRNA operon (and none of the se-
quences surrounding the rRNA genes) are targeted in
ARDRA than in ribotyping. The few references on
applying the ARDRA technique for Bacillus, Clostrid-
ium, or Listeria fingerprinting describe RFLP analysis of
PCR-amplified 16S rDNA (16S rDNA-RFLP) for the
characterization of psychrophilic and psychrotrophic
clostridial strains associated with spoilage of vacuum-
packed meats, typical and atypical Listeria isolates, and
enterotoxic B. cereus [53, 261, 415].

Pulsed-field gel electrophoresis

Due to the problems encountered with conventional
REA of bacterial genomes, a technique was developed
for bacterial fingerprinting, using profiles consisting of
fewer numbers of larger-sized genomic restriction frag-
ments [111]. In this technique, bacterial genomic DNA is
restricted in situ (in a gel block) with a rare cutting

restriction endonuclease, such as SmaI, SfiI, NotI, or
BssHII, and the restriction fragments are separated by
PFGE, which is a special technique capable of the res-
olution of large DNA fragments. With PFGE, highly
discriminative fingerprinting of bacterial isolates can be
performed. Of the different molecular fingerprinting
methods, PFGE has in most cases proved to be the most
discriminatory. However, PFGE is a laborious tech-
nique and it is not usually applied in studies where large
numbers of isolates are characterized.

PFGE has been used in the fingerprinting of C. per-
fringens clinical isolates, but has only infrequently been
applied in the fingerprinting of B. cereus. However, there
are many more data on the applicability of PFGE for
L. monocytogenes typing. PFGE has been used to
characterize L. monocytogenes isolates from food items,
the environment, and human listeriosis cases, to trace a
contamination in an ice cream plant, in fish-, seafood-,
and meat-processing plants, and in pig slaughterhouses
[27, 28, 65, 86, 97, 120, 151, 204, 255, 280, 281, 282, 308,
309, 373]. PFGE analysis of clostridia proves challeng-
ing, due to their endogenous DNAse activity [229].
However, PFGE was successfully applied in the char-
acterization of C. perfringens strains associated with
food-borne-disease or antibiotic-diarrhea, especially
when cell pre-treatment steps that interfere with the
DNAse activity were included [253, 269, 326, 381]. In
B. cereus typing, PFGE was applied to investigate a
bacillus pseudo-outbreak in a pediatric unit [246].

Random amplified polymorphic DNA

In RAPD fingerprinting, one or two primers (usually
10–12 bp long) are arbitrarily selected and allowed to
anneal to the bacterial genomic DNA template at a low
stringency. In RAPD, several amplification products of
varying sizes are obtained. These products are resolved
electrophoretically to yield a RAPD-fingerprint [330,
442]. RAPD typing is fast to perform, especially in cases
where fingerprinting can be performed directly on single-
colonies growing on an agar plate. Due to the low
stringency of the PCR amplification, RAPD-fingerprints
can show some variation (especially in band strengths)
and therefore the fingerprint comparisons have to be
done visually by an experienced person. However,
when strictly identical conditions (same thermocycler,
reagents, etc.) are used, the method usually works well
[279]. RAPD banding-pattern reproducibility can be
improved by using a procedure where the same strains
are exposed to three different annealing temperatures
(with increasing stringency) and by identifying the stable
amplicons [78]. This triplicate procedure naturally
makes the RAPD fingerprinting technique more labori-
ous.

RAPD is best suited for studies where a specific
bacterial strain (e.g. a certain food-borne pathogen) is
sought among large number of isolates. Bacterial iso-
lates with fingerprints clearly different from the specific
bacterial strain can quickly be identified with RAPD and
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rejected. Thereafter, the remaining (fewer) strains may
be further characterized with another, more laborious
technique (e.g. ribotyping, PFGE, AFLP). RAPD is not
well suited for interlaboratory or taxonomic studies, or
studies where the aim is to develop a fingerprint data-
base.

RAPD can be used for the fingerprinting of B. cereus
isolates in a versatile manner [19, 80, 81, 301, 387]. For
example, it proved useful in the differentiation of psy-
chrotolerant B. cereus strains [238] and B. cereus isolates
from spontaneously fermented food [354] and in tracing
the source of B. cereus contamination in pasteurized
milk, ethyl alcohol, and food-poisoning outbreaks [112,
144, 189]. There are several reports on RAPD finger-
printing of L. monocytogenes, including studies where
RAPD was used in typing isolates from different foods
(cheese, poultry products, (cold-)smoked salmon, meat
products, imitation crab meat), animals, human listeri-
osis cases, and to trace contamination in pork slaugh-
tering and cutting plants, in fish, seafood, and meat
processing plants, in a poultry processing environment,
and in a dairy environment [7, 30, 46, 59, 93, 120, 135,
136, 151, 199, 224, 237, 250, 259, 277, 428, 444]. To our
knowledge, RAPD-typing has not been reported for C.
perfringens, although another food-borne Clostridium,
C. botulinum, has been fingerprinted with RAPD [197].

Repetitive element sequence-based PCR

Repetitive chromosomal elements, which are found
randomly distributed in bacterial genomes, are the tar-
gets of rep-PCR amplification. In rep-PCR, primers
anneal to repetitive parts of the chromosome and
amplification occurs when the distance between primer
binding sites is short enough to enable this [419]. The
repetitive DNAs can be classified either as short
sequence repeats (SSRs) or variable number of tandem
repeats (VNTRs). Variations of rep-PCR include
enterobacterial repetitive intergenic consensus PCR
(ERIC-PCR), BOX-PCR, repetitive extragenic palin-
dromic unit sequence PCR, and VNTR-PCR [410].

rep-PCR techniques are fairly infrequently applied
for the characterization of Clostridium, Bacillus, or
Listeria strains. To our knowledge, there is only one
report of Clostridium rep-PCR, where C. botulinum
strains were characterized [197]. For B. cereus typing,
ERIC-PCR, BOX-PCR, and VNTR-PCR have been
applied [3, 162, 227, 321, 361] and rep-PCR has been
used for the typing of other Bacillus spp. [82, 174]. For
Listeria spp., fingerprinting rep-PCR and ERIC-PCR
have been used [212, 213, 370].

Amplified fragment length polymorphism

AFLP involves restriction of total bacterial DNA with
two restriction enzymes of differing cutting frequencies
(e.g.HindIII, TaqI), followed by ligation of the fragments
to oligonucleotide adapters complementary to the

sequences of the restriction sites (restriction-half-site-
specific adapters). Selective PCR amplification of subset
of fragments is achieved using primers corresponding to
the contiguous sequences in the adapter and restriction
site, plus a few nucleotides in the original target DNA.
When only one of the primers is labeled, only a subset of
amplified fragments is detected during visualization [206,
424]. A variation of this technique has been developed,
where only a single restriction enzyme is used [146].

AFLP is a fairly new technique and therefore only
scarce data are available on its application in B. cereus,
C. perfringens, and L. monocytogenes fingerprinting. In
the few papers published, AFLP proves a sensitive and
reproducible technique for the typing of C. perfringens
and L. monocytogenes [1, 275, 340]. AFLP was used to
trace an outbreak of B. cereus infections in a neonatal
intensive care unit to the balloons used in manual ven-
tilation and to study B. cereus soil isolates [403, 412].

Discriminative power of different techniques

A number of studies have been performed where the
discriminative power of the above mentioned techniques
have been compared. For B. cereus fingerprinting,
RAPD proved a somewhat more discriminative method
than ribotyping, whereas the discriminative abilities of
ribotyping and ERIC-PCR were equal [19, 361]. For
C. perfringens typing, ribotyping and PFGE proved
equally discriminative [360]. In L. monocytogenes fin-
gerprinting, RAPD, PFGE, and AFLP were equally
discriminative [97, 151, 224, 420, 421]. Ribotyping has
proved either equally discriminative or a bit less dis-
criminative than PFGE and RAPD in L. monocytogenes
typing [224, 250, 308]. These results indicate that RAPD,
PFGE, ribotyping, rep-PCR, and AFLP are all suitable
methods for subspecies-level fingerprinting of B. cereus,
L. monocytogenes, and C. perfringens. The discrimina-
tive capabilities of the techniques are about equal and
the results obtained with different techniques are gen-
erally in very good agreement with each other. The
choice of restriction endonuclease in PFGE and ribo-
typing and the choice of primers in RAPD have a great
impact on the discriminative ability of these techniques.
Therefore, the applied technique has to be tailor-made
for each bacterial species, to obtain the best possible
discriminative ability.

Future prospects for the exploitation of the described
methods in the industrial environment

Biofilms cannot be eliminated from industrial systems by
any of the current methods available. Thus, the primary
challenge is to control rather than eradicate biofilms
from the industrial environment [61]. Knowledge about
the microbiota present in the industrial environment will
help to control the formation and build-up of biofilms,
since specific characteristics of each microbiota can be
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considered when preventative and/or control measures
are applied. Applications of the microbiological meth-
ods described in this review are presented in Table 3. It
should be remembered that sampling is a crucial step in
the characterization/identification procedure. If it is
performed inadequately, the characterization of micro-
biota will inevitably be biased.

The emergence of new detection and real-time
methods is linked to the need for a better assessment of
the microbiological quality of products. This objective
can be reached through an increase in detection speci-
ficity and a reduction in analysis time [346]. In particu-
lar, in situ techniques should enable progress in
understanding the ecology of complex microbial com-
munities in minimally disturbed samples. The most
important weakness of culture-independent methods is
that the taxonomic interpretation of data appears
problematic [152]. Although various new detection
methods are applied to detect microorganisms from the
industrial environment, the use of culture techniques will
persist, since the international standard methods for the
detection and enumeration of pathogens are based on
cultivation. In addition, in many industrial quality
control laboratories, resources for the use of new
molecular methods are inadequate.

In routine food control, PCR assays may shorten the
time needed to identify e.g. L. monocytogenes, although
enrichment may be necessary prior to the detection. By
using virulence-associated genes as primers or probes,
the presence of pathogenic species can be rapidly
determined. However, dead bacterial cells may consti-
tute a problem in basic PCR detection in hygiene con-
trol. For example, heat-treated samples may contain
dead or damaged cells with no relevance to product
safety, although the dead bacteria may still create posi-

tive signals due to the stability of their DNA molecules
[311]. In some circumstances (when the RNAse activity
of the bacterial population is not destroyed in the sample
prior to analysis), RT-PCR can be applicable in assess-
ing the viable and active populations in samples. DNA-
based detection methods, especially PCR, may gradually
replace traditional methods for assaying microorgan-
isms in food. When applicable (e.g. when no enrichment
step is required), real-time PCR (which enables the
quantification of target sequences) can prove highly
useful for the rapid analysis of food pathogens. How-
ever, PCR detection of pathogens in food samples is still
time-consuming, particularly in the case of large-scale
testing [364]. High-throughput methods, such as dot-
blot hybridization using microarrays, have promising
future potential for routine diagnostic and quality con-
trol procedures in industrial settings [245].

One of the challenges for microbial ecology is to gain
more information below the bacterial community,
genera, and even species level. Subspecies-level identifi-
cation is especially important when a source of con-
tamination is traced in an industrial environment. DNA
fingerprinting techniques provide effective molecular
tools to identify and type microorganisms to subspecies
level [152]. When typing of the microbial isolates is
performed, e.g. to trace a contamination source, the
importance of including sufficient numbers of isolates
from each sample site should be remembered. Once
efficiently integrated, the typing techniques provide
precise information on the heterogeneity of the target
bacterial population at a given time/space combination.
However, fingerprinting methods are laborious and
time-consuming, since isolation and cultivation of a
large number of bacterial isolates cannot be avoided.
Another limitation is that the unculturable strains

Table 3 Applications of
microbiological methods
described in this review. FISH
Fluorescence in situ
hybridization

Task Available methods

Detection of selected species/groups Culture
Specific PCR
Specific hybridization (including microarray)
FISH

Strain-level identification Ribotyping
ARDRA
PFGE
RAPD
rep-PCR
AFLP

Quantification of specific microorganisms Culture
Quantitative PCR
FISH
Culture hybridization

Activity of the microorganisms Metabolic stains in combination with microscopy
RT-PCR alone or combined with other techniques
RNA hybridization

Community analysis Epifluorescence/confocal laser scanning microscopy
Culture
DGGE/TGGE
SSCP
FISH
Specific hybridization (including microarray)
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present in natural ecosystems cannot be reached with
typing methods.

In conclusion, bacterial detection, identification, and
typing from industrial samples remains a laborious task,
mainly due to the fact that frequently large numbers of
samples need to be analyzed. The development of
automated techniques that allow high-throughput anal-
ysis of large numbers of samples will greatly facilitate
studies on industrial microbial ecology in the future.
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306. Nübel U, Englen B, Felske A, Snaidr J, Wieshuber A, Amann
R, Ludwig W, Backhaus H (1996) Sequence heterogeneities of
genes encoding 16S rRNAs in Paenibacillus polymyxa de-
tected by temperature gradient gel electrophoresis. J Bacteriol
178:5636–5643

307. O¢Connor L, Joy J, Kane M, Smith T, Maher M (2000) Rapid
polymerase chain reaction/DNA probe membrane-based as-
say for the detection of Listeria and Listeria monocytogenes in
food. J Food Prot 63:337–342

351



308. Ojeniyi B, Wegener HC, Jensen NE, Bisgaard M (1996) Lis-
teria monocytogenes in poultry and poultry products: epide-
miological investigations in seven Danish abattoirs. J Appl
Bacteriol 80:395–401

309. Ojeniyi B, Christensen J, Bisgaard M (2000) Comparative
investigation of Listeria monocytogenes isolated from turkey
processing plant, turkey products and from human cases of
listeriosis in Denmark. Epidemiol Infect 125:303–308

310. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA
(1986) Microbial ecology and evolution: a ribosomal RNA
approach. Annu Rev Microbiol 40:337–365

311. Olsen JE, Aabo S, Hill W, Notermans S, Wernars K, Granum
PE, Popvic T, Rasmussen HN, Olsvik O (1995) Probes and
polymerase chain reaction for detection of food-borne bacte-
rial pathogens. Int J Food Microbiol 28:1–78

312. Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Hornes E,
Ugelstad J, Uhlen M (1994) Magnetic separation techniques
in diagnostic microbiology. Clin Microbiol Rev 7:43–54

313. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T
(1989) Detection of polymorphisms of human DNA by gel
electrophoresis as single-strand conformation polymorphisms.
Proc Natl Acad Sci USA 86:2766–2770

314. Ouverney CC, Fuhrman JA (1999) Combined microautora-
diography—16S rRNA probe technique for determination of
radioisotope uptake by specific microbial cell types in situ.
Appl Environ Microbiol 65:1746–1752

315. Palleroni NJ (1997) Prokaryotic diversity and the importance
of culturing. Antonie Van Leeuwenhoek 72:3–19

316. Paziak-Domaska B, Bogusawska E, Wieckowska-Szakiel M,
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358. Schabereiter-Gurtner C, Piñar G, Lubitz W, Rölleke S (2001)
An advanced molecular strategy to identify bacterial com-
munities on art objects. J Microbiol Methods 45:77–87

359. Schalch B, Björkroth J, Eisgruber H, Korkeala H, Stolle A
(1997) Ribotyping for strain characterization of Clostridium
perfringens isolates from food poisoning cases and outbreaks.
Appl Environ Microbiol 63:3992–3994

360. Schalch B, Sperner B, Eisgruber H, Stolle A (1999) Molecular
methods for the analysis of Clostridium perfringens relevant to
food hygiene. FEMS Immunol Med Microbiol 24:281–286

361. Schangkuan YH, Yang JF, Lin HC, Shaio MF (2000) Com-
parison of PCR-RFLP, ribotyping, and ERIC-PCR for typing
Bacillus anthracis and Bacillus cereus strains. J Appl Microbiol
89:452–462

362. Schaule G, Flemming H-C, Ridgway HF (1993) Use of
5-cyano-2,3-ditolyl tetrazolium chloride for quantifying
planctonic and sessile respiring bacteria in drinking water.
Appl Environ Microbiol 59:3850–3857

363. Schena M, Shalon D, Davis RW, Brown PO (1995) Quanti-
tative monitoring of gene expression patterns with a comple-
mentary DNA microarray. Science 270:467–470

364. Scheu PM, Berghof K, Stahl U (1998) Detection of patho-
genic and spoilage micro-organisms in food with the poly-
merase chain reaction. Food Microbiol 15:13–31

365. SchleiferKH,LudwigW,AmannR (1993)Nucleic acid probes.
In: Goodfellow M, McDonnell O (eds) Handbook of new
bacterial systematics. Academic Press, London, pp 463–510

366. Schneegurt MA, Kulpa CF Jr (1998) The application of
molecular techniques in environmental biotechnology for
monitoring microbial systems. Biotechnol Appl Biochem
27:73–79

367. Schraft H, Griffiths MW (1995) Specific oligonucleotide
primers for detection of lecithinase-positive Bacillus spp. by
PCR. Appl Environ Microbiol 61:98–102

368. Schwartz T, Hoffmann S, Obst U (1998) Formation and
bacterial composition of young, natural biofilms obtained
from public bank-filtered drinking water systems. Water Res
32:2787–2797

369. Schwieger F, Tebbe CC (1998) A new approach to utilize
PCR-single-strand-conformation polymorphism for 16S
rRNA gene-based microbial community analysis. Appl
Environ Microbiol 64:4870–4876

370. Sciacchitano CJ (1998) DNA fingerprinting of Listeria mon-
ocytogenes using enterobacterial repetitive intergenic consen-
sus (ERIC) motifs–polymerase chain reaction/capillary
electrophoresis. Electrophoresis 19:66–70

371. Sekiguchi H, Tomioka N, Nakahara T, Uchiyama H (2001) A
single band does not always represent single bacterial strains
in denaturing gradient gel electrophoresis analysis. Biotechnol
Lett 23:1205–1208

372. Selvakumar N, Ding BC, Wilson SM (1997) Separation of
DNA strands facilitates detection of point mutations by PCR-
SSCP. BioTechnology 22:604–606

373. Senczek D, Stephan R, Untermann F (2000) Pulsed-field gel
electrophoresis (PFGE) typing of Listeria strains isolated
from a meat processing plant over a 2-year period. Int J Food
Microbiol 62:155-159

374. Sheridan JJ, Duffy G, Buchanan RL, MacDowell DA, Blair
IS (1994) The use of selective and non-selective enrichment
broths for the isolation of Listeria species from meat. Food
Microbiol 11:439–446

375. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita
A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H
(2002) Complete genome sequence of Clostridium perfringens,
an anaerobic flesh-eater. Proc Nat Acad Sci USA 99:996–1001

376. Simon MC, Gray DI, Cook N (1996) DNA extraction and
PCR method for the detection of Listeria monocytogenes in
cold-smoked salmon. Appl Environ Microbiol 62:822–824

377. Simon HM, Smith KP, Dodsworth JA, Guenthner B, Han-
delsman J, Goodman RM (2001) Influence of tomato geno-
type on growth of inoculated and indigenous bacteria in the
spermosphere. Appl Environ Microbiol 67:514–520

378. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S,
Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil
bacterial communities studied by denaturing gradient gel
electrophoresis: plant-dependent enrichment and seasonal
shifts revealed. Appl Environ Microbiol 67:4742–4751

379. Sorrelle PH, Eelgard W (1992) Growth in recycling escalates
costs for paper machine biological control. Pulp Pap 66:57–64

380. Southern EM (1975) Detection of specific sequences among
DNA fragments separated by gel electrophoresis. J Mol Biol
98:503–517

381. Sparks SG, Carman RJ, Sarker MR, McClane BA (2001)
Genotyping of enterotoxigenic Clostridium perfringens fecal
isolates associated with antibiotic-associated diarrhea and
food poisoning in North America. J ClinMicrobiol 39:883–888

382. Spiro A, Lowe M (2002) Quantitation of DNA sequences in
environmental PCR products by a multiplexed, bead-based
method. Appl Environ Microbiol 68:1010–1013

383. Stahl DA (1995) Application of phylogenetically based
hybridization probes to microbial ecology. Mol Ecol 4:535–
542

384. Stahl DA, Amann RI (1991) Development and application of
nucleic acid probes in bacterial systematics. In: Stackebrandt
E, Goodfellow M (eds) Sequencing and hybridization tech-
niques in bacterial systematics. Wiley, Chichester, pp 205–248

385. Stahl DA, Capman WC (1994) Applications of molecular
genetics to the study of microbial communities. NATO ASI
Ser 35:193–206

386. Stahl DA, Flesher B, Mansfield HR, Montgomery L (1988)
The use of phylogenetically based hybridization probes for
studies of ruminal microbial ecology. Appl Environ Microbiol
54:1079–1084

353



387. Stephan R (1996) Randomly amplified polymorphic DNA
(RAPD) assay for genomic fingerprinting of Bacillus cereus
isolates. J Food Microbiol 31:311–316

388. Stewart PS, Griebe T, Srinivasan R, Chen C-I, Yu FP, Beer D
de, McFeters GA (1994) Comparison of respiratory activity
and culturability during monochloramine disinfection of bin-
ary population biofilms.Appl EnvironMicrobiol 60:1690–1692

389. Strachan NJ, Gray DI (1995) A rapid general method for the
identification of PCR products using a fibre-optic biosensor
and its application to the detection of Listeria. Lett Appl
Microbiol 21:5–9

390. Stugger S (1948) Fluorescence microscope examination of
bacteria in soil. Can J Res 26:188–193

391. Suh J-H, Knabel SJ (2001) Comparison of different enrichment
broths and background flora for detection of heat-injured
Listeria monocytogenes in whole milk. J Food Prot 64:30–36

392. Suihko M-L, Hoekstra ES (1999) Fungi present in some
recycled fibre pulps and paperboards. Nord Pulp Pap Res J
14:199–203

393. Suihko M-L, Salo S, Niclasen O, Gudbjorndottir B, Tor-
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408. Väisänen O, Nurmiaho-Lassila EL, Marmo S, Salkinoja-
Salonen M (1994) Structure and composition of biological
slimes on paper and board machines. Appl Environ Microbiol
60:641–653

409. Vallaeys T, Topp E, Muyzer G, Macharet V, Laguerre G,
Rigaud A, Soulas G (1997) Evaluation of denaturing gradient
gel electrophoresis in the detection of 16S rDNA sequence
variation in rhizobia and methanotrophs. FEMS Microbiol
Ecol 24:279–285

410. Van Belkum A, Scherer S, Van Alphen L, Verbrugh H (1998)
Short-sequence DNA repeats in prokaryotic genomes.
Microbiol Mol Biol Rev 62:275–293

411. Van Damme-Jongsten M, Rodhouse J, Gilbert RJ, Noter-
mans S (1990) Synthetic DNA probes for detection of en-
terotoxigenic Clostridium perfringens strains isolated from
outbreaks of food poisoning. J Clin Microbiol 28:131–133

412. Van Der Zwet WC, Parlevliet GA, Savelkoul PH, Stoof J,
Kaiser AM, Van Furth AM, Vandenbroucke-Grauls CM
(2000) Outbreak of Bacillus cereus infections in a neonatal
intensive care unit traced to balloons used in manual venti-
lation. J Clin Microbiol 38:4131–4136

413. Vaneechoutte M (1996) DNA fingerprinting techniques for
microorganisms. Mol Biotechnol 6:115–142

414. Vaneechoutte M, Rossau R, Vos P De, Gilis M, Janssens D,
Paepe N, De Rouck A, Fiers T, Claeys G, Kersters K (1992)
Rapid identification of bacteria of the Comamonadaceae with
amplified ribosomal DNA-restriction analysis (ARDRA).
FEMS Microbiol Lett 15:227–233

415. Vaneechoutte M, Boerlin P, Tichy H-V, Bannerman E, Jager
B, Bille J (1998) Comparison of PCR-based DNA-finger-
printing techniques for the identification of Listeria species
and their use for atypical Listeria isolates. Int J Syst Bacteriol
48:127–139

416. Van Netten P, Perales I, Moosdijk A van de, Curtis GDW,
Mossel DAA (1989) Liquid and solid selective differential
media for the detection and enumeration of L. monocytogenes
and other Listeria spp. Int J Food Microbiol 8:299–316

417. Van Netten P, Kramer JM (1992) Media for the detection and
enumeration of Bacillus cereus in foods: a review. Int J Food
Microbiol 17:85–99

418. Vela M, Heredia NL, Feng P, Garcı́a-Alvarado JS (1999)
DNA probe analysis for the carriage of enterotoxigenic
Clostridium perfringens in feces of a Mexican subpopulation.
Diagn Microbiol Infect Dis 35:101–104

419. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of
repetitive DNA sequences in eubacteria and application to
fingerprinting of bacterial genomes. Nucleic Acid Res
19:6823–6831

420. Vogel BF, Huss HH, Ojeniyu B, Ahrens P, Gram L (2001)
Eludication of Listeria monocytogenes contamination routes
in cold-smoked salmon processing plants detected by DNA-
based typing methods. Appl Environ Microbiol 67:2586–
2595

421. Vogel BF, Jorgensen LV, Ojeniyi B, Huss HH, Gram L (2001)
Diversity of Listeria monocytogenes isolates from cold-smoked
salmon produced in different smokehouses as assessed by
random amplified polymorphic DNA analyses. Int J Food
Microbiol 6:83–92

354



422. Von Stetten F, Francis KP, Lechner S, Neuhaus K, Schrerer S
(1998) Rapid discrimination of psychotolerant and mesophilic
strains of the Bacillus cereus group by PCR targeting of 16S
rDNA. J Microbiol Methods 34:99–106
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